11,197 research outputs found

    Gauge Coupling Unification in E6 F-Theory GUTs with Matter and Bulk Exotics from Flux Breaking

    Full text link
    We consider gauge coupling unification in E6 F-Theory Grand Unified Theories (GUTs) where E6 is broken to the Standard Model (SM) gauge group using fluxes. In such models there are two types of exotics that can affect gauge coupling unification, namely matter exotics from the matter curves in the 27 dimensional representation of E6 and the bulk exotics from the adjoint 78 dimensional representation of E6. We explore the conditions required for either the complete or partial removal of bulk exotics from the low energy spectrum. In the latter case we shall show that (miraculously) gauge coupling unification may be possible even if there are bulk exotics at the TeV scale. Indeed in some cases it is necessary for bulk exotics to survive to the TeV scale in order to cancel the effects coming from other TeV scale matter exotics which would by themselves spoil gauge coupling unification. The combination of matter and bulk exotics in these cases can lead to precise gauge coupling unification which would not be possible with either type of exotics considered by themselves. The combination of matter and bulk exotics at the TeV scale represents a unique and striking signature of E6 F-theory GUTs that can be tested at the LHC.Comment: 21 pages, 5 figure

    Ɓukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Ɓukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    7.2% efficient polycrystalline silicon photoelectrode

    Get PDF
    After etching, n-type cast polycrystalline silicon photoanodes immersed in a solution of methanol and a substituted ferrocene reagent exhibit photoelectrode efficiencies of 7.2%±0.7% under simulated AM2 illumination. Scanning laser spot data indicate that the grain boundaries are active; however, the semiconductor/liquid contact does not display the severe shunting effects which are observed at a polycrystalline Si/Pt Schottky barrier. Evidence for an interfacial oxide on the operating polycrystalline Si photoanode is presented. Some losses in short circuit current can be ascribed to bulk semiconductor properties; however, despite these losses, photoanodes fabricated from polycrystalline substrates exhibit efficiencies comparable to those of single crystal material. Two major conclusions of our studies are that improved photoelectrode behavior in the polycrystalline silicon/methanol system will primarily result from changes in bulk electrode properties and from grain boundary passivation, and that Fermi level pinning by surface states does not prevent the design of efficient silicon-based liquid junctions

    A 14% efficient nonaqueous semiconductor/liquid junction solar cell

    Get PDF
    We describe the most efficient semiconductor/liquid junction solar cell reported to date. Under W‐halogen (ELH) illumination, the device is a 14% efficient two‐electrode solar cell fabricated from an n‐type silicon photoanode in contact with a nonaqueous electrolyte solution. The cellâ€Čs central feature is an ultrathin electrolyte layer which simultaneously reduces losses which result from electrode polarization, electrolyte light absorption, and electrolyte resistance. The thin electrolyte layer also eliminates the need for forced convection of the redox couple and allows for precise control over the amount of water (and other electrolyte impurities) exposed to the semiconductor. After one month of continuous operation under ELH light at 100 mW/cm^2, which corresponds to the passage of over 70 000 C/cm^2, thin‐layer cells retained over 90% of their efficiency. In addition, when made with Wacker Silso cast polycrystalline Si, cells yield an efficiency of 9.8% under simulated AMl illumination. The thin‐layer cells employ no external compensation yet surpass their corresponding experimental (three‐electrode) predecessors in efficiency

    4-Methyl-2,6-bis(phosphonomethyl)phenol dihydrate

    Get PDF
    The 4-methyl-2,6-bis(phosphomethyl)phenol molecule, which crystallizes with two water molecules per asymmetric unit, has approximate twofold symmetry and is involved in extensive three-dimensional hydrogen bonding in which every available OH group participates. The principal dimensions include P--O 1.4981 (13) and 1.5015 (14) ,~, four P--OH distances in the range 1.5395(14) to 1.5688(13) A, P--C 1.7857(17) and 1.7893 (17) ~k, and O...O intramolecular and intermolecular hydro.gen-bond distances in the range 2.458 (2) to 2.866 (2) A

    Creating a web-scale video collection for research

    Get PDF
    This paper begins by considering a number of important design questions for a web-scale, widely available, multimedia test collection intended to support long-term scientific evaluation and comparison of content-based video analysis and exploitation systems. Such exploitation systems would include the kinds of functionality already explored within the annual TRECVid benchmarking activity such as search, semantic concept detection, and automatic summarisation. We then report on our progress in creating such a multimedia collection which we believe to be web scale and which will support a next generation of benchmarking activities for content-based video operations, and we report on our plans for how we intend to put this collection, the IACC.1 collection, to use

    Visualization-Based Mapping of Language Function in the Brain

    Get PDF
    Cortical language maps, obtained through intraoperative electrical stimulation studies, provide a rich source of information for research on language organization. Previous studies have shown interesting correlations between the distribution of essential language sites and such behavioral indicators as verbal IQ and have provided suggestive evidence for regarding human language cortex as an organization of multiple distributed systems. Noninvasive studies using ECoG, PET, and functional MR lend support to this model; however, there as yet are no studies that integrate these two forms of information. In this paper we describe a method for mapping the stimulation data onto a 3-D MRI-based neuroanatomic model of the individual patient. The mapping is done by comparing an intraoperative photograph of the exposed cortical surface with a computer-based MR visualization of the surface, interactively indicating corresponding stimulation sites, and recording 3-D MR machine coordinates of the indicated sites. Repeatability studies were performed to validate the accuracy of the mapping technique. Six observers—a neurosurgeon, a radiologist, and four computer scientists, independently mapped 218 stimulation sites from 12 patients. The mean distance of a mapping from the mean location of each site was 2.07 mm, with a standard deviation of 1.5 mm, or within 5.07 mm with 95% confidence. Since the surgical sites are accurate within approximately 1 cm, these results show that the visualization-based approach is accurate within the limits of the stimulation maps. When incorporated within the kind of information system envisioned by the Human Brain Project, this anatomically based method will not only provide a key link between noninvasive and invasive approaches to understanding language organization, but will also provide the basis for studying the relationship between language function and anatomical variability

    ROBOSIM: An intelligent simulator for robotic systems

    Get PDF
    The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year)

    Anatomical Parcellation of Cortical Language Sites

    Get PDF
    Anatomical labeling of cerebral cortical stimulation (CSM) sites is necessary for intelligent computer querying of a rich and unique experimental database examining neural substrates underlying human language production. To this end, we have developed a parcellation scheme for the lateral surface of the human cerebral cortex. We then compared results generated utilizing this approach to those generated using an alternative method implemented in the Talairach Daemon
    • 

    corecore